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Abstract

A new type of environmental numerical models, hybrid environmental numerical models (HEMs) based on combining deter-
ministic modeling and machine learning components, is introduced and formulated. Conceptual and practical possibilities of
developing HEM, as an optimal synergetic combination of the traditional deterministic/first principles modeling (like that used
for solving PDEs on the sphere representing model dynamics of global climate models) and machine learning components (like
accurate and fast neural network emulations of model physics or chemistry processes), are discussed. Examples of developed
HEMs (hybrid climate models and a hybrid wind–wave ocean model) illustrate the feasibility and efficiency of the new approach
for modeling extremely complex multidimensional systems.
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. Introduction

Scientific and practical significance of interdis-
iplinary environmental numerical models (ENMs)
ncreased tremendously during the last decades due
o developments in numerical modeling and com-
uting capabilities. Traditional ENMs are determin-
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istic models based on first principle equations.
example, numerical atmospheric and oceanic m
els for climate and weather predictions are base
solving time-dependent three-dimensional geoph
cal fluid dynamics equations on the sphere. Phy
and/or chemical processes (like radiation, convec
clouds, turbulence, chemical reactions) are so com
cated that they can be included into ENMs only
one-dimensional (in the vertical direction) simplified
parameterized versions, as r.h.s. forcing for dyna
equations. Still, these parameterizations are the
time consuming components of ENMs. These par
eterizations are usually derived using physical pro
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models and observational data and usually include
some statistically derived empirical coefficients and
some secondary empirical components based on tradi-
tional statistical techniques like regression. However,
for this kind of ENMs, all major model components are
deterministic, namely, not only model dynamics but
also model physics and chemistry. Only recently the
attempts were made to introduce statistical major com-
ponents into ENMs. For example, an attempt was made
to apply a traditional statistical technique, an expansion
in hierarchical correlated functions, to approximate
an atmospheric chemistry component (seeSchoendorf
et al., 2003and the references therein). This tradi-
tional technique was successfully applied, however,
with a limited accuracy. Much higher accuracy require-
ments must be met for such complex multidimensional
systems as ENMs. A particular case of machine learn-
ing technique (MLT), namely, neural networks (NN),
was successfully applied to speed up calculations of
atmospheric and ocean model physics parameteriza-
tions (Chevallier et al., 1998, 2000; Krasnopolsky et al.,
1999, 2002, 2004, 2005a,b; Krasnopolsky and Cheval-
lier, 2001, 2003).

In this paper, on the basis of aforementioned prelimi-
nary studies and our current work with atmospheric and
ocean physics, we formulate a new approach, which is
based on a massive synergetic integration of determin-
istic and machine learning components in hybrid (com-
bining deterministic modeling and machine learning)
environmental models (HEM). We discuss conceptual
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ronmental models is the complexity of physical, chem-
ical and biological processes involved. We will discuss
MLT emulation for model physics keeping in mind
that the discussion is applicable to model chemical
and biological processes as well. Parameterizations
of model physics (chemistry, etc.) are approximate,
adjusted to model resolution and computer resources,
schemes based on simplified physical process equa-
tions and empirical data. Still, the parameterizations
are so time-consuming, even for most powerful modern
supercomputers, that some of them have to be calcu-
lated less frequently than model dynamics. This may
negatively affect the accuracy of ecological simula-
tions and predictions. For example, in the case of a
very sophisticated ENM—climate model, calculation
of a model physics package in a typical moderate (a
few degrees) resolution GCM like the National Cen-
ter for Atmospheric Research (NCAR) Community
Atmospheric Model (CAM) takes about 70% of the
total model computations. Higher uniform and variable
model resolutions (e.g.Fox-Rabinovitz et al., 2002;
Duffy et al., 2003) and more frequent model physics
calculations, desirable for temporal consistency with
model dynamics, would increase the computation time
for model physics.

Such a situation is an important motivation for look-
ing for alternative, faster, and most importantly, very
accurate ways of calculating model physics, chem-
istry and biology. The approach discussed in this paper
introduces a new paradigm of hybrid numerical model,
w ter-
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nd practical possibilities of developing HEMs, wh
re based on an efficient synergy or on an optimal c
ination of the traditional deterministic modeling li

hat of general circulation models or global clim
odels (GCMs) and MLTs for accurate and fast em

ion of model physics. In Section2, we describe HEM
sing accurate and fast emulations based on ML
olve a major computational problem in developm
f high-quality high-resolution environmental nume
al models. In Section3, we formulate our approach.
ection4, we present several developed HEMs. Sec
contains conclusions and discussion.

. Hybrid models

One of the main problems of development
mplementation of high-quality high-resolution en
hich is based on a synergetic combination of de
inistic numerical modeling with machine learn

echniques for emulating model physics.
During the last decade a new emerging appro

ased on machine learning NN approximati
as found the variety of applications in differe
elds and, more specifically, for accurate and
pproximation of atmospheric radiative proces
Krasnopolsky, 1997; Chevallier et al., 1998), and for
nvironmental satellite data processing (Stogryn e
l., 1994; Krasnopolsky et al., 1995; Krasnopol
nd Schiller, 2003). Recently, the NN approach h
een successfully applied for developing a fast (e

imes faster than the original parameterization)
ccurate long-wave (LW) radiation parameteriza

or the European Centre for Medium-range Wea
orecasting (ECMWF) model (Chevallier et al.
000). This LW radiation parameterization is be
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used operationally within the ECMWF 4-dimensional
variational data assimilation system since October
2003. The NN emulation approach has been also
used for emulations of model physics in ocean and
atmospheric numerical models (Krasnopolsky et al.,
1999, 2002, 2004, 2005a,b; Tolman et al., 2005)
where acceleration of calculation from 10 to 105

times has been achieved, as compared with original
parameterizations (see Section4).

Based on above results we introduce a new notion
of hybrid ENM (HEM), which combines determinis-
tic (e.g. model dynamics) and machine learning (e.g.
NN emulations of model physics and/or chemistry)
components to perform calculations more effectively
than original completely deterministic ENM. To eval-
uate feasibility of HEM, four key questions of the
new approach should be answered: (i) are developed
machine learning approximations close enough to the
original physical/chemical parameterizations so that
their use (instead of the original parameterization)
allows us to preserve all richness and complete integrity
and all the detailed features of environmental physi-
cal/chemical processes, (ii) are these approximations
fast enough to significantly accelerate calculations
of model physics/chemistry, (iii) are these statisti-
cal/machine learning techniques able to successfully
coexist with deterministic components of ENMs so that
their combination (which is HEM) can be efficiently
used for accurate and fast environmental simulations
without any negative impacts on their quality, and (iv)
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to avoid a possible confusion. The term parameteriza-
tion already means a simplified approximation of phys-
ical processes. So, in the context of our approach, the
term emulation means a complete functional imitation
based on a precise mathematical/statistical approxima-
tion (in a classic mathematical sense) of model physics
parameterizations.

The key point is that NN emulation is developed here
for the existing parameterizations of model physics.
This allows us to preserve the integrity and the level
of sophistication of the state-of-the-art parameteri-
zations of physical processes. Due to the capability
of modern MLTs to provide an unprecedented accu-
racy for approximation of complex systems like model
physics, our NN emulations of model physics parame-
terizations are practically identical to original physical
parameterizations. As a result, HEM using this emula-
tion produces results, which are physically identical to
those of the original ENM. In other words, the under-
lying idea of the approach is not developing a new
parameterization but rather emulating a parameteriza-
tion already very carefully tested and validated by its
developers off-line and then on-line through experi-
mentation with the entire model. It is achieved by using
for NN training data simulated by running an original
model (i.e. ENM) with the original parameterization.
Using model-simulated data for NN training allows
us to achieve a very high accuracy for approximation
because simulated data are free of the problems typical
for empirical data (problems like high level of observa-
t , poor
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i uch
s there a real/productive synergy here, in other wo
oes this new combination of deterministic and sta

ical learning approaches, the new HEM, lead to
pportunities in environmental simulations.

. Formulation of the hybrid approach

.1. Hybrid approach

A NN emulation of a model physics parameteriz
ion is a functional imitation of this parameterization
hat the results of model calculations with the orig
arameterization and with its NN emulation are ph

cally (and climatologically) identical. High quality
N emulations is achieved due to the high accurac
pproximation of the original components. We prefe
se the term NN emulation but not NN approximat
ional noise, sparse spatial and temporal coverage
epresentation of extreme events, etc.). In the co
f our approach, the accuracy and improved com

ational performance of HEM and NN emulations
lways measured against the ENM using the orig
arameterization. It is noteworthy that the develo
N emulation has the same inputs and outputs a
riginal parameterization and is used as its functi
ubstitute in the model.

.2. Neural network technique

NN emulations of model physics/chemistry
ased on the fact that any parameterization of m
hysics/chemistry can be considered as a continuo
lmost continuous mapping (output vector versus i
ector dependence), and NNs (multilayer percept
n our case) are a generic tool for approximation of s
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mappings. NN is an analytical approximation that uses
a family of mappings like

yq = aq0 +
k∑

j=1

aqjφ

(
bj0 +

n∑
i=1

bjixi

)
;

q = 1, 2, . . . , m (1)

wherexi andyq are the components of the input and
output vectors respectively,a andb the fitting param-
eters,φ a so-called activation function (usually it is
a hyperbolic tangent),n andm the numbers of inputs
and outputs, respectively, andk is the number of neu-
rons in the hidden layer (seeRipley, 1997; Appendix
in Krasnopolsky et al., 2002for more details).

3.3. Development and validation framework

Let us formulate a developmental framework and
validation criteria that are, in our view, useful, instru-
mental, and recommended to be followed when devel-
oping and validating machine learning components of
HEM, NN emulations of model physics (or chemistry)
components. The developmental process consists of
three major steps.

The first step is the problem analysis or the anal-
ysis of the model component to be approximated (for
example, the original parameterization). The purpose
of this analysis is first to determine the topology (archi-
tecture) of the future NN emulation by specifying the
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the number of inputs and outputs for each NN should
not exceed a reasonable necessary limit. The analysis
of the complexity of the original parameterization will
help in selecting the initial number of neurons in the
hidden layer.

Thesecond step is generation of representative data
sets for training, testing and validation. The number of
records and the time interval covered by these data sets
depend on such characteristics of a model as resolu-
tion, a type of a model (climate, weather, or chemistry
model), and on a particular type of the model compo-
nent under consideration. This approach is based on
using simulated data, which allows us to produce NN
emulations physically identical to the original param-
eterizations. To create a representative data set the
original ENM is run long enough to produce all pos-
sible atmospheric states, phenomena, etc. To account
for insufficient sampling for some events it is possible
to run the original parameterization off-line generating
complimentary data to extend sampling. In some appli-
cations, the use of blended (simulated, assimilated, and
observational) data for NN training could be beneficial.

The third step is the NN training. Several differ-
ent versions of NNs with different number of neurons
in one (or several) hidden layers should be trained to
determine the optimal size of the hidden layer, which
provides both sufficient approximation accuracy and
reasonable acceleration of calculations. For each of
these NNs, several initialization procedures and train-
ing algorithms should be applied to assure that good
m
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umber of NNs to be developed. There are sev
ays to develop NN emulations for model phys
omponents. Namely, the physical or computatio
tructures of a model physics scheme can be ana
nd followed. In the first example of the next sect

he physical structure of the original parameteriza
as been followed that resulted in developing a
le NN emulating this parameterization. The sec
xample, the nonlinear wave–wave interaction, dem
trates another case when the straightforward app
sed in the first case does not work and a more so

icated approach should be implemented. Yet ano
ay would be following the computational structu
f a parameterization, determining the computati
bottlenecks” and developing NN emulation for eac
hem. The second purpose of the topological analy
o determine all the inputs and outputs, and their n
er for each particular NN. For any structuring strat
inimum of the error function is found.
Validation of HEM with trained NN emulation co

ists of two major steps. The first step is validatio
N approximation against the original parameter

ion using the independent validation data set. B
he original parameterization and its NN emulat
re complicated multidimensional objects (mappin
any different statistical metrics of the approxim

ion accuracy should be calculated to assure tha
ufficiently complete evaluation of the approximat
ccuracy is obtained. For example, total, level,
rofile statistics have to be evaluated (see Sectio4).
he second validation step consists of compre
ive analysis of parallel HEM versus ENM runs.
he parallel experiments, all relevant model progno
nd diagnostic fields should be analyzed and care
ompared to assure that the integrity of ENM
he original parameterization, with all its details a
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characteristic features, is preserved when using HEM
with NN emulation (see Section4.1). Therefore, the
development and application framework of the new
synergetic approach should be focused on obtaining
the high accuracy for both NN emulation and HEM
simulations.

4. Examples of machine learning components
and HEMs

4.1. Atmospheric applications

In this section we present applications of the
approach formulated in the previous sections to atmo-
spheric models. Two atmospheric models, NCAR
CAM (the two latest versions of this model have
been used for our developments and experiments) and
NASA’s NSIPP (NASA Seasonal-to-Interannual Pre-
diction Program) GCM, are used here as examples
of complex ENMs that include parameterizations of
model physics. NCAR GCM is the state-of-the-art
widely recognized model used by a large community
for long term climate prediction. NSIPP GCM was
extensively used for both short and long term climate
prediction. More specifically, in this Section we apply
the NN and HEM methodology and framework to the
NCAR CAM radiation block including the long-wave
radiation (LWR) and the short-wave radiation (SWR)
parameterizations, and to the LWR parameterization in
N m-
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parameterization. Mean difference,B (bias or a system-
atic error of approximation), and the root mean square
difference (a root mean square error of approximation),
RMSE, between the original parameterization and its
NN emulation, are calculated as follows:

B = 1

NL

N∑
i=1

L∑
j=1

[Y (i, j) − YNN(i, j)],

RMSE=
√∑N

i=1
∑L

j=1[Y (i, j) − YNN(i, j)]2

NL
(2)

whereY(i,j) andYNN(i,j) are the outputs of the original
parameterization and of NN emulation, respectively,
wherei = (lat, lon),i = 1, . . ., N the horizontal location
of a vertical profile,N the number of horizontal grid
points, andj = 1, . . ., L is the vertical index whereL is
the number of the vertical levels. Using a slight mod-
ification of Eqs.(2), biasBm and RMSEm for themth
vertical level can be calculated as follows:

Bm = 1

N

N∑
i=1

[Y (i, m) − YNN(i, m)],

RMSEm =
√∑N

i=1[Y (i, m) − YNN(i, m)]2

N
(3)

4.1.2. NN emulations for the NCAR CAM LWR
and SWR and for NSIPP LWR parameterizations

iza-
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p R
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m tion
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s first
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t the
SIPP GCM. NCAR CAM and NSIPP GCM are co
lex climate models with different model dynamics a
hysics. They have different model dynamics, vert
nd horizontal resolutions and different formulati

or atmospheric physics including LWR paramet
ations. NCAR CAM uses a spectral discetization
odel dynamics, which has 42 spectral compon

corresponds approximately to about 3.5◦ horizonta
lobal resolution) and 26 vertical levels. The NS
odel used in this study is a grid point model, which
orizontal (latitude× longitudes) resolution 2◦ × 2.5◦
nd 40 vertical levels. Applying the NN approach

hese different models is aimed at investigating
obustness of the approach.

.1.1. Statistical metrics for validation of NN
mulations

Our NN emulations have been validated agains
orresponding original model, NCAR CAM or NSIP
The functions of the LWR and SWR parameter
ions in atmospheric GCMs are to calculate the
esponding heating/cooling fluxes and rates. The c
lete description of the NCAR CAM atmospheric LW
nd SWR parameterizations is presented in (Journal o
limate, 1998; Collins, 2001). The NASA NSIPP LWR
arameterization is described inChou et al. (2001). The
tmospheric radiation is the most time consuming
f the atmospheric model physics. For NCAR CA

he calculation of the radiation block (LWR and SW
akes about 70% of time required for calculating
odel physics and about 50% of the total calcula

ime. This consideration was our main motivation
electing the atmospheric radiation block as the
andidate for applying our NN emulation and HE
pproach.

Because our NN emulations are functional im
ions of the original parameterizations, they have
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same inputs and outputs as the original parameteriza-
tions, which are determined by the internal structure of
physical equations and approximations implemented
within the original parameterizations. Because of that
the NCAR CAM and NSIPP LWR parameterizations
and their corresponding NN emulations have slightly
different inputs and outputs as the result of the two dif-
ferent physical schemes implemented in the original
parameterizations (compareCollins, 2001; Chou et al.,
2001).

The input vectors for the NCAR CAM LWR param-
eterization and our corresponding NN emulation con-
tain totally 220 inputs (n = 220 in Eq.(1)). The inputs
include 10 profiles: atmospheric temperature, humid-
ity, ozone, CO2, N2O, CH4, two CFC mixing ratios
(the annual mean atmospheric mole fractions for the
halocarbons), pressure, and cloudiness and one rel-
evant surface characteristic (upward LW flux at the
surface). The total number of outputs is 33 (m = 33
in Eq. (1)). The output vectors consist of the pro-
file of heating rates (HRs) and several radiation fluxes
including the outgoing LWR flux from the top layer of
the model atmosphere (the outgoing LW radiation or
OLR).

The input vector for the NSIPP LWR includes five
vertical profiles (cloud fraction, pressure, temperature,
specific humidity, and ozone mixing rate) and the sur-
face temperature, or totally 202 inputs. The NSIPP
LWR output vector consists of the profile of heating
rates and one surface parameter, or the total of 41 out-
p
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s ith
1 .
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conversions of the approximations, seeKrasnopolsky
et al., 2005a).

The ENMs, NCAR CAM and NSIPP, were run for
2 years to generate the representative data sets. The
first year of model simulation was divided into two
independent parts each containing input/output vector
combinations. The first part was used for training and
the second one was used for tests (control of overfit-
ting, control of a NN architecture, etc.). The second
year of simulation was used to create a validation data
set completely independent from both training and test
ones. This third part was used for validations only. All
approximation statistics presented below in this sec-
tion are calculated using this independent validation
data set. The data sets simulated by NCAR CAM were
used for training NN emulations for the CAM radiation
(LWR and SWR) block and data simulated by NSIPP
model for training NN emulations for the NSIPP LWR.

Three different NN emulations with different num-
ber of neurons (100, 150, and 200) in one hidden layer
have been developed for each parameterization. All
these NN emulations have almost zero or negligible
systematic errors (biases) (seeTable 1), which practi-
cally do not depend on height. Obtaining such small
biases is important for preventing an undesirable error
accumulation during long term model calculations dis-
cussed below.Table 1demonstrates the conversions
of NN emulations in terms of approximation errors
when the number of hidden neurons increases.Table 1
andFig. 1 also demonstrate the robustness of our NN
e ima-
t hen
a ery
d of
R rac-
t dom
e el-
o ).
T 50,
a d for
e Ns,
t eed
0 the
t for
t ics
( also
i
H

uts (Krasnopolsky et al., 2005b).
The input vectors for the NCAR CAM SWR para

terization include 21 profiles (specific humidity, oz
oncentration, pressure, cloudiness, aerosol mass
ng ratios, etc.) and several relevant surface chara
stics. The CAM SWR parameterization output vec
onsist of the profile of heating rates (HRs) and sev
adiation fluxes. This parameterization and our co
ponding NN emulation have for each the total of
nputs and 33 outputs.

For each of these parameterizations we devel
everal NNs, all of which have one hidden layer, w
00, 150, and 200 neurons (k = 100, 150, 200 in Eq
1)). Varying the number of hidden neurons allows u
emonstrate the dependence of the accuracy of ap

mation and its convergence on this parameter, and
esult, to provide the sufficient accuracy of approxi
ion for the climate models (for a detailed discussio
mulation technique, which produces the approx
ion errors of practically the same magnitude w
pplied to three different parameterizations in two v
ifferent models.Fig. 1 shows the vertical profiles
MSEs (2), which in the case of zero biases (or p

ically zero biases as in our case) are purely ran
rrors of approximation, for six NN emulations dev
ped for the CAM radiation block (LWR and SWR
hree NNs with different number of neurons (100, 1
nd 200) in one hidden layer have been develope
ach LWR and SWR parameterizations. For all N

he RMSE for the 10 upper levels does not exc
.2 K/day reaching 0.4 K/day at the 23rd level. For

wo lowest levels, RMSE is about 0.6–0.8 K/day
he LWR and only 0.4–0.5 K/day for SWR. Statist
biases and RMSEs) for the lowest (26th) level are
ncluded inTable 1. The natural variability (σ) of the
Rs is significantly higher (see in the title ofTable 1) at
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Table 1
Statistics estimating the accuracy of HRs (in K/day) calculations and computational performance for NCAR CAM LWR and SWR and NSIPP
LWR using NN emulation vs. the original parameterization

NN size Model/parameteriazation Bias RMSE Biasll RMSEll Performance

NN100 CAM/LWR −9× 10−4 0.30 3× 10−3 0.77 ∼80 times faster
CAM/SWR −6× 10−3 0.22 −9× 10−3 0.48
NSIPP/LWR −2× 10−4 0.58 7× 10−3 0.97

NN150 CAM/LWR 9× 10−4 0.25 1× 10−2 0.67 ∼50 times faster
CAM/SWR −4× 10−5 0.20 2× 10−2 0.47
NSIPP/LWR −6× 10−4 0.47 1× 10−3 0.79

NN200 CAM/LWR 1× 10−3 0.21 −1× 10−2 0.56 ∼35 times faster
CAM/SWR −5× 10−3 0.18 −2× 10−2 0.40
NSIPP/LWR −2× 10−4 0.45 3× 10−3 0.76

Biasll and RMSEll (in K/day) correspond to the lowest layer (26th for CAM and 40th for NSIPP). The total mean value for HRs =−1.36 K/day
and the standard deviationσHR = 1.93 K/day. For the lowest CAM level (26th), the mean value for HRs =−2.22 K/day andσHR = 5.57 K/day.
NNnnn denotes NN withnnn neurons in the hidden layer.

lowest levels than at higher ones. Hence, relative errors
in the HRs calculated with respect to the natural vari-
ability (σ) are approximately the same as errors for the
higher levels.

Table 1shows a bulk validation statistics for the
accuracy of approximation and computational perfor-
mance for the three best (in terms of their accuracy and
performance) developed NN emulations. Mean values
and standard deviations (σHR) of HRs are presented in
the title ofTable 1for a better understanding of relative
errors. Therefore, the obtained RMSEs are sufficiently
small for the entire vertical profile compared to the
mean and standard deviation values.

In addition to this high approximation accuracy, our
NN emulation performs about 80–35 times faster (for
NN100, NN150, and NN200, respectively) than the
original parameterizations.Table 1andFig. 1 clearly
show a systematic improvement of the accuracy of
approximation with the increase of the size of the NN
hidden layer.Table 1also demonstrates a correspond-
ing reduction, when increasing the number of neurons,
of the performance gain from 80 to 35 times faster than
the original parameterization. This offers an oppor-
tunity for the accuracy versus performance trade off.
However, as we mentioned earlier, in this trade off the
key requirement, which allows us to obtain the success-
ful, synergetic functioning of the NN emulations within
HEMs, is to preserve the accuracy and integrity of the
original parameterization, i.e. the detailed description
of the corresponding physical process. Obviously, the
fi s to

be implemented into the model, should be made based
on testing these NNs in HEM simulations.

Both the original parameterization and its NN emu-
lation are complicated multidimensional objects (map-
pings). In this case, calculating bulk statistics is not
sufficient for evaluating the accuracy of approximation.
We evaluated many different statistical metrics of the
approximation accuracy (Krasnopolsky et al., 2005a);
some of them are shown inFigs. 1 and 2.

Fig. 2 shows the absolute zonal mean bias (the
left column) and zonal mean RMSE (the right col-
umn). The zonal mean error is a three-dimensional error
field (error as a function of latitude, longitude, and
height) averaged over the longitude and presented as
a two-dimensional field in latitude–height coordinates.
Three panel rows (top, middle, and bottom) correspond
to three different NNs, namely NN100, NN150, and
NN200, respectively. With increasing the accuracy of
approximation (when increasing the number of hid-
den neurons in the NN) both zonal mean bias and
RMSE decrease significantly. Comparing the top, mid-
dle and bottom panels, we see that small spots with the
bias > 0.01 K/day (the left column) in the lower part of
the atmosphere disappear completely. Also, the small
spots of RMSE > 0.25 K/day (the right column) disap-
pear at the upper levels. In the lower part of the atmo-
sphere, small areas with RMSE > 1 K/day (the right
column) disappear already for NN150, and even more
so for NN200, and the areas with RMSE > 0.5 K/day
are confined just within two small spots located in the
p
nal decision on the optimal NN version, which ha
 olar areas.
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Fig. 1. The vertical profiles of RMS approximation errors(3) for NN emulations of LWR (upper row) and SWR (lower row) at each of 26 levels
of CAM. Left panels: RMSEs in the units of the standard deviations of HR for corresponding vertical level. Right panels: RMSEs in absolute
units (K/day). Three NNs are shown for each parameterization—NN100: solid, NN150: dashed, and NN200: dash-dotted.

4.1.3. Validation of LWR NN emulations in a long
term climate model simulation

The analysis of approximation errors presented
above shows that the NN technique is capable of pro-
viding NN emulations with practically zero systematic
errors or biases and small random errors. The next step
is validation of NN emulations in a long term climate
model simulation. For assessing the impact of using NN
emulation of the LWR parameterization in the HEM,
the parallel climate simulation runs have been per-
formed with the original ENM, NCAR CAM including
the original LW radiation parameterization (the control
run), and with the HEM, NCAR CAM including our
NN emulations described above. The climate simula-
tions have been run for 10 years started after the training
and validation period, namely for years 3 through 12.
All the comparisons of the control and NN emulation

runs presented below in the section are done by ana-
lyzing the time (10-year) mean differences between the
results of different runs.

Mass preservation is the most important property
for climate simulations. In the climate simulations per-
formed with the original ENM and with HEM the
time mean global mass or mean surface pressure is
precisely preserved. For example, for the NN150 run
there is a negligible difference of 0.0001% between the
NN and control runs (seeTable 2). Other time global
means, some of which are also presented inTable 2,
show a profound similarity between the simulations in
these terms, with the differences usually within about
0.03–0.1% and not exceeding 0.1–0.3%. Other simu-
lations (with NN100 and NN200) show similar results.

We also carefully investigated key simulated climate
diagnostic and prognostic fields and their differences
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Fig. 2. Absolute zonal mean bias (the left column) and zonal mean RMSE (the right column) for NN100, NN150, and NN200 (for the top,
middle and bottom panels, respectively).

produced in the parallel control (original ENM) and NN
emulation (HEM) runs. The comparison of biases for
NN100 and NN150 runs (Krasnopolsky et al., 2005a)
confirms that increasing the number of hidden neurons
from 100 to 150 leads to a measurable bias reduction
that positively affects the accuracy of the NN150 cli-

mate simulation in terms of its profound similarity to
the control simulation. Most importantly, biases for
both NN100 and NN150 10-year simulations are not
accumulating in time. It is noteworthy that even the
maximum temperature, zonal wind and moisture biases
for the NN100 run are still below the corresponding
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Table 2
Time and global means for mass (mean sea level pressure) and other model diagnostics for the NCAR CAM climate simulations with the original
LWR parameterization and its NN emulation (NN150) and their differences (in %)

Field Original LWR parameterization NN emulation Difference (%)

Mean sea level pressure (hPa) 1011.480 1011.481 0.0001
Surface temperature (K) 289.003 289.001 0.0007
Total precipitation (mm/day) 2.275 2.273 0.09
Total cloudiness (fractions 0.1–1) 0.607 0.609 0.3
LWR heating rates (K/day) −1.698 −1.700 0.1
Outgoing LWR–OLR (W/m2) 234.43 234.63 0.08
Latent heat flux (W/m2) 82.84 82.82 0.03

observational errors. These results are practically sig-
nificant and constitute the proof of the concept for
HEM.

4.2. Ocean application: a neural network
approximation for nonlinear interactions in wind
wave models

Another ENM, ocean wind wave model for simula-
tion and forecast purposes, is based on a form of the
spectral energy or action balance equation:

DF

Dt
= Sin + Snl + Sds + Ssw (4)

whereF is the spectrum,Sin the input source term,
Snl the nonlinear wave–wave interaction source term,
Sds the dissipation or ‘whitecapping’ source term, and
Ssw represents the additional shallow water source
terms. State-of-the-art wave models explicitly model
Snl source term.

In its full form (e.g.Hasselmann and Hasselmann,
1985), the calculation of the interactionsSnl requires
the integration of a six-dimensional Boltzmann inte-
gral:

Snl(�k4) = T ⊗ F (�k)

= ω4

∫
G(�k1, �k2, �k3, �k4)δ(�k1 + �k2 − �k3 − �k4)

ω

where the complicated coupling coefficientG contains
moving singularities. This integration requires roughly
103–104 times more computational effort than all other
aspects of the wave model combined. Present opera-
tional constraints require that the computational effort
for the estimation ofSnl should be of the same order
of magnitude as the remainder of the wave model.
This requirement was met with the development of the
discrete interaction approximation (DIA,Hasselmann
et al., 1985). More than two decades of experience with
the DIA in wave models has identified significant short-
comings of the DIA.

Considering the above, it is of crucial importance
for the development of third generation wave mod-
els to developan economical yet accurate approxi-
mation for Snl. We explored a neural network inter-
action approximation (NNIA) to achieve this goal
(see alsoKrasnopolsky et al., 2002; Tolman et al.,
2005). NNs can be applied here because the non-
linear interaction(5) is essentially a nonlinear map-
ping (symbolically represented in Eq.(5) by T) which
relates two vectors,F andSnl (two-dimensional fields
in this case). Discretization ofS and F (as is nec-
essary in any numerical approach) reduces(5) to
continuous mapping of two vectors of finite dimen-
sions. Modern high resolution wind wave models use
descretization on a two-dimensional grid which leads
to dimensions ofS andF vectors of order ofN ∼ 1000.
It seems unreasonable to develop a NN approxima-
tion of such a high dimensionality (more than 1000
i rid
d

nd
c of
t pec-
t n
× δ(ω1 + ω2 − ω3 − ω4)

× [n1n3(n4 − n2) + n2n4(n3 − n1)]

× d�k1 d�k2 d�k3, n(�k) = F (�k)

ω
;

2 = gk tanh(kh) (5)
nputs and outputs). Moreover, such a NN will be g
ependent.

In order to reduce the dimensionality of the NN a
onvert the mapping(5) to a continuous mapping
wo finite vectors less dependent on the actual s
ral discretization, the spectrumF and source functio
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Fig. 3. Graphical representation of the NNIA and NNIAE algorithms.

Snl are expanded using systems of two-dimensional
functions each of which (�i and�q) creates a com-
plete and orthogonal two-dimensional basis:

F ≈
n∑

i=1

xi�i, Snl ≈
m∑

q=1

yq�q (6)

where for coefficients of decomposition/composition
xi andyq, we have

xi =
∫∫

F�i, yq =
∫∫

Snl�q, (7)

where the double integral identifies integration over
the spectral space. The developed NN relates vectors
of coefficientsX andY: Y = TNN(X).

To train the NN approximation,TNN, a training
set has to be created that consists of pairs of vec-
tors X and Y. To create this training set, a repre-
sentative set of spectraFp has to be generated with
corresponding (exact) interactionsSnl,p using Eq.(5).
For each pair (F, Snl)p, the corresponding vectors (X,
Y)p are determined using Eq.(7). These pairs of vec-
tors are then used to train the NN to obtainTNN.
After TNN has been obtained by training, the result-
ing NN interaction approximation (NNIA) algorithm
consists of three steps: (i) decompose the input spec-
trum, F, by applying Eq.(7) to calculateX; (ii) esti-
mate Y from X using NN; (iii) compose the output

source function,Snl, from Y using Eq.(6). A graph-
ical representation of the NNIA algorithm is shown in
Fig. 3.

Two approaches have been used for the basis
functions. The first is a mathematical basis used in
(Krasnopolsky et al., 2002). As it is usually done in the
parametric spectral description of wind waves, sepa-
rable basis functions are chosen where the frequency
and angular dependence are separated. The advantage
of this choice of basis functions is the simplicity of
the basis generation. The disadvantage is the slow
convergence of the decompositions. As an alterna-
tive, a second approach to the basis functions choice
has been investigated. In this approach, empirical
orthogonal functions (EOFs) or principal components
(Lorenz, 1956; Jolliffe, 2002) are used (Tolman et al.,
2005).

EOFs form a statistically optimal basis. In the
present case, the basis functions�i and�q are func-
tions of two variablesf andθ. The set of spectraF and
source termsSnl, which are used for the training of the
NN, are also used to generate the EOFs for decompos-
ing F andSnl. When using EOFs, the basis generation
procedure is computationally expensive, with the cost
increasing as the resolution of the model increases.
However, like the NN training, the basis generation
needs to be performed only once. Stored results can be
used without the need for re-calculation in a practical



16 V.M. Krasnopolsky, M.S. Fox-Rabinovitz / Ecological Modelling 191 (2006) 5–18

Table 3
Approximation RMSEs (in nondimensional units) and performance
(see units in text) for DIA, NNIA, NNIAE, and exactSnl calculation
(original)

Algorithm RMSE Performance

DIA 0.312 1
NNIA 0.088 4
NNIAE 0.035 7
Original parameterization 0 ∼8.× 105

NNIA. The main advantage of EOFs is the fast conver-
gence of the decomposition.

To distinguish between NN algorithms using differ-
ent bases functions for decomposition, we use abbre-
viation NNIAE for our NN algorithm, which used
the EOF basis.Table 3demonstrates comparisons of
the accuracy and performance of DIA with those of
two NN emulations (NNIA and NNIAE) all versus
the exact calculation ofSnl (original parameteriza-
tion). Approximation errors (RMSEs) are calculated in
nondimensional units and performance is measured in
DIA calculation times (taken as a unit). The NNIAE is
nearly 10 times more accurate than DIA. It is about
105 times faster than the original parameterization.
As for the case of the atmospheric long wave radia-
tion a careful investigation of parallel runs of original
ENM (wave model with original wave–wave interac-
tion) and HEM with NN emulation is being performed
currently.

5. Conclusions and discussion

In the study, we formulated a new paradigm in
the environmental numerical modeling. We introduced
a new type of ENM—a hybrid environmental model
(HEM) which is based on a synergetic combination of
deterministic modeling and a machine learning tech-
nique within an HEM. This approach uses neural net-
works as a statistical or machine learning technique to
d for
m ined
r

el-
of
rity

(ii) that accurate NN emulations are robust and very
fast (up to 105 times faster than original param-
eterization) so that the significant acceleration of
HEM calculations can be achieved without com-
promising its accuracy;

(iii) that statistical/machine learning components can
be successfully combined with deterministic
model components within HEM so that their syn-
ergy can be efficiently used for environmental
simulations without any negative impacts on sim-
ulation quality;

(iv) that this productive synergy or the new combi-
nation of the state-of-the-art deterministic and
statistical learning approaches leads to new oppor-
tunities in HEM for environmental simulations
and prediction. For example, new more sophis-
ticated parameterizations and even “superparam-
eterizations”, that are computationally prohibited
when used in their original form in ENM, will
become computationally “affordable” when using
their accurate and computationally more efficient
MLT emulations in HEM.

This study presents the major framework and
first experimental results for new hybrid modeling
approach. Let us briefly outline possible/potential
future avenues of the developments of the hybrid mod-
eling framework.

The development of NN emulations, the core of the
hybrid modeling approach, depends significantly on
o et to
a ain
c ion-
a ral
h the
e ted
w data
f hat
N ime
e sim-
u ime
( sce-
n NN
m tion
a sult
i

ake
o cli-
evelop highly accurate and fast approximations
odel physics/chemistry components. The obta

esults show:

(i) the conceptual and practical possibility of dev
oping HEMs with accurate NN emulation
model components, which preserves the integ
and all the detailed features of original ENM;
ur ability to generate a representative training s
void using NN for extrapolation far beyond the dom
overed by the training set. Because of high dimens
lity of the input domain which is of the order of seve
undreds or more, it is rather difficult to cover
ntire domain, especially its “far corners” associa
ith rare events, even when we use the simulated

or the NN training. Another related problem is t
N emulations are developed for a changing in t
nvironmental system. It means that for a climate
lation the domain configuration may change in t
for example, when using a future climate change
ario). For both described situations, the emulating
ay be forced to extrapolate beyond its generaliza
bility that may lead to errors in NN outputs and re

n the corresponding HEM simulation errors.
To take care about this kind of problems and m

ur NN emulation approach suitable for long term
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mate change simulations and other applications, we are
developing two new techniques: acompound parame-
terization (CP) and an NNdynamical adjustment (DA).
Their full description will be provided on the com-
pletion of the developments. Here we will just briefly
outline them.

The compound parameterization consists of three
elements: the original parameterization, its NN emula-
tion, and a quality control (QC) block. During a routine
HEM simulation with CP, the NN emulation is used by
default, and it generates physical parameters (outputs),
which are quality controlled. If QC accepts the output
parameters, they are used in HEM. If QC rejects the
NN emulation outputs, the original parameterization
is used instead for generating the physical parameters,
which are used in HEM. When the original parameter-
ization is used instead of the NN emulation, its inputs
and outputs are saved for a further adjustment of the
NN emulation. After accumulating a sufficient num-
ber of the records, a dynamical adjustment of the NN
emulation is produced by a short retraining using the
accumulated input/output records. Thus, the adapted
NN emulation becomes dynamically adjusted to the
changes and/or new events/states produced by the com-
plex environmental system.

There are different possible designs, which we con-
sider for QC. The first and simplest QC design is based
on a set of regular physical and statistical tests that are
used for checking the consistency of the NN outputs.
The second QC design is based on training additional
N N
e fined
t tead
o C
d pro-
p llite
r com-
b

as
b EMs
c ech-
n r, it
i port
v hich
m LT
c and
p pes
o vel-

oped using the approach described in this paper. We
are planning on investigating other MLTs and other
types of HEMs in the follow-up studies.
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